Látum $\alpha,\beta,\gamma$ tákna stærð hornanna í þríhyrningi og gerum ráð
fyrir að $\beta = \frac{1}{2}(\alpha+\gamma)$. Reiknið
$$
\frac{\sin(\alpha)+\sin(\beta)+\sin(\gamma)}{\cos(\alpha)+\cos(\beta)+\cos(\gamma)}.
$$
Lausn
Nú er $\alpha+\beta+\gamma=180^\circ$ og þar sem gefið er að
$2\beta=\alpha+\gamma$ þá fæst að $2\beta=180^\circ-\beta$ og því
$\beta=60^\circ$. Þá er $\alpha+\gamma=120^\circ$ og því
$$
\begin{aligned}
\cos(\gamma)&=\cos(120^\circ-\alpha)=\cos(120^\circ) \cos(\alpha)+\sin(120^\circ)
\sin(\alpha)\\&=-\frac{1}{2}\cos(\alpha)+\frac{\sqrt3}{2}\sin(\alpha),\\
\sin(\gamma)&=\sin(120^\circ-\alpha)=\sin(120^\circ) \cos(\alpha)-\cos(120^\circ)
\sin(\alpha)\\
&=\frac{\sqrt3}{2}\cos(\alpha)+\frac{1}{2}\sin(\alpha).
\end{aligned}
$$
Þá er
$$
\begin{aligned}
\frac{\sin(\alpha)+\sin(\beta)+\sin(\gamma)}{\cos(\alpha)+\cos(\beta)+\cos(\gamma)}
&=\frac{\sin(\alpha)+\frac{\sqrt3}{2}+\frac{\sqrt{3}}{2}\cos(\alpha)
+\frac{1}{2}\sin(\alpha)}{\cos(\alpha)+\frac{1}{2}-\frac{1}{2}\cos(\alpha)+\frac{\sqrt3}{2}\sin(\alpha)}\\
&=\frac{3\sin(\alpha)+\sqrt{3}+\sqrt{3}\cos(\alpha)}{\cos(\alpha)+1+\sqrt{3}\sin(\alpha)}\\
&=\frac{\sqrt{3}(\sqrt{3}\sin(\alpha)+1+\cos(\alpha))}{\cos(\alpha)+1+\sqrt{3}\sin(\alpha)}\\
&=\sqrt{3}
\end{aligned}
$$