Í þríhyrningi $A B C$ gildir að $b\geq a$. Táknum með $M$ miðpunkt hliðarinnar $c$ og með $H$ fótpunkt hæðarinnar frá $C$. Sýnið að
$$|M H|=\frac{b^2-a^2}{2 c}.$$
Þrjú strandríki vilja skipta með sér þríhyrningslaga hafsvæði $A B C$. Ríkin þrjú eiga hvert sitt skerið í hornpunktum þríhyrningsins. Eftir langar og erfiðar samningaviðræður verður eftirfarandi regla til: Þegar ákvarða á hvaða ríki fær yfirráðarétt yfir punkti $P$ innan í $A B C$, þá er mæld fjarlægðin frá $P$ yfir í skerin þrjú (hornpunktana) og punkturinn tilheyrir svo því ríki sem á skerið sem er næst honum. Finnið skilyrði á lögun þríhyrningsins $A B C$ (skilyrði á hornin eða hlutföll hliða) sem þarf að vera uppfyllt til þess að einhver tvö ríkjanna eigi ekki samliggjandi hafsvæði.
Látum $x$ vera rauntölu. Sannið að um einhverja af tölunum $x,2x,\ldots, 99x$ gildir að munurinn á henni og einhverri heilli tölu er minni en $\frac{1}{100}$.
Á fundi í Karphúsinu sátu $29$ menn saman í kringum hringborð. Allir þessir menn voru með þeim ósköpum fæddir að annaðhvort sögðu þeir aldrei satt orð eða hvert einasta orð sem þeir sögðu var satt. Og þar sem þeir sitja þarna í kringum borðið segja þeir allir í kór „Næst mér á báðar hendur sitja lygarar“. Sýnið að í það minnsta $10$ af mönnunum segja alltaf satt. Er mögulegt að nákvæmlega $10$ af þeim séu sannsöglir?
Gerum ráð fyrir að $a$, $b$ og $c$ séu þrjár núllstöðvar
(rætur) margliðunnar
$p(x)=x^3-19x^2+26x-2$. Reiknið út stærðina
$$
\frac{1}{a}+\frac{1}{b} +\frac{1}{c}.
$$